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Abstract
Recent years have witnessed a rapid development of network reconstruction approaches,

especially for a series of methods based on compressed sensing. Although compressed-

sensing based methods require much less data than conventional approaches, the com-

pressed sensing for reconstructing heterogeneous networks has not been fully exploited

because of hubs. Hub neighbors require much more data to be inferred than small-degree

nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a

conflict-based method is proposed to overcome the cast effect to considerably reduce data

amounts for achieving accurate reconstruction. Moreover, an element elimination method is

presented to use the partially available structural information to reduce data requirements.

The integration of both methods can further improve the reconstruction performance than

separately using each technique. These methods are validated by exploring two evolution-

ary games taking place in scale-free networks, where individual information is accessible

and an attempt to decode the network structure from measurable data is made. The results

demonstrate that for all of the cases, much data are saved compared to that in the absence

of these two methods. Due to the prevalence of heterogeneous networks in nature and soci-

ety and the high cost of data acquisition in large-scale networks, these approaches have

wide applications in many fields and are valuable for understanding and controlling the col-

lective dynamics of a variety of heterogeneous networked systems.

Introduction
Complex networks are the backbone of many complex systems and play a significant role in a
variety of collective dynamics of complex systems [1–6]. However, a great challenge arises
when many complex networks are directly measured because of limited technology. Thus, the
need arises for addressing the inverse problem of complex networks, i.e., indirectly reconstruct-
ing complex networks from measurable data. This has been a fundamental problem of explor-
ing complex networked systems, and the significance of the inverse problem has been
increasingly recognized. Many approaches have been developed to reconstruct complex
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networks [7–10]. In particular, a series of network reconstruction methods based on com-
pressed sensing theory [11–16] have recently been proposed [17–20]. The approaches exploit
the natural sparsity of real complex networks and convert the network reconstruction problem
into a sparse signal reconstruction problem that can be solved by compressed sensing algo-
rithm from a small amount of data. The approaches have been applied to reconstructing epi-
demic spreading networks [19], coupled oscillator networks [10, 17], social interaction
networks [18, 20], as well as communication and transportation networks [20]. Specifically, to
implement the compressed sensing based method, one needs to decompose the task of recon-
structing the entire network into inferring local structures centered at each node. The amount
of data required for reconstructing a local structure of a node is determined by the number of
node links. In general, more data are required to reconstruct a node with more links. Note that
data can be shared by all nodes for inferring their local structures, indicating that the data for
accurate reconstruction is determined by the nodes with maximum degrees. Thus, the maxi-
mum-degree node becomes the “cask short board” of reconstruction. The cask principle is not
serious for a network with homogeneous degree distribution because all nodes with homoge-
neous degrees require similar data. By contrast, a serious problem arises for heterogeneous net-
works, especially for networks with a small fraction of hubs [21–25], such as scale-free
networks [26, 27]. The amount of data for reconstructing the local structure of a hub will be
much larger than the other nodes. Many data measurements are merely used for a few nodes,
accounting for the inefficiency of implementing this method. Thus, a practically important
problem is raised: is it possible to reduce the data amount for reconstructing heterogeneous
networks? Another situation that if often encountered and likely reduces the required data is
the presence of a fraction of accessible links. The use of the partial structural information to
reduce data amounts is also valuable discussion.

Because heterogeneous property is shared by many complex networks and there is a great
need to ascertain network topology, this work aims to improve the compressed sensing based
method by significantly reducing the data requirement for reconstructing heterogeneous net-
works. Specifically, two methods are proposed, the conflict-based method (CBM) and the ele-
ment elimination method (EEM), where the former can remarkably reduce data amounts
without relying on partial accessible links and the latter employs the partial structural informa-
tion to reduce data amounts. The combination of the two methods can further reduce the
required data compared to each the separate use of method. The two methods are validated
using two representative evolutionary games occurring in scale-free networks, where it is
assumed that individual information is measurable and an attempt is made to decode the net-
work structure from measurable information. The results demonstrate that both methods and
their incorporation indeed significantly reduce the data requirements compared to the original
compressed sensing based method. Regarding the cost of accessing data, especially for biologi-
cal systems, the efficient approaches presented here could have practical importance and
potential applications in a wide range of fields.

Methods
Two evolutionary games are employed that occur in complex networks to demonstrate how to
implement the network reconstruction method. The evolutionary prisoner’s dilemma game
(PDG) [28] has been a paradigm to understand cooperation among selfish individuals in
nature and society [18, 20]. In the past decade, much interest has been given to the PDG on
complex networks with focus on how network structure affects cooperation. Based on the
PDG, many mechanisms have been proposed to facilitate cooperation, among which costly
punishment [29, 30] as a representative altruistic behavior has been explored intensively. By
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incorporating the costly punishment mechanism, the PDG can be extended to a three-strategy
game, called the cooperation-defection-punishment game (CDP).

In the networked PDG, each node is occupied by a player. At each round, a player can
choose one of the two strategies (S): cooperation (C) or defection (D), which can be denoted as
S(C) = (1, 0)T and S(D) = (1, 0)T, respectively. For the CDP, there are three selectable strategies
(S): cooperation (C), defection (D) and costly punishment (P), which can be denoted as S(C) =
(1, 0, 0)T, S(D) = (0, 1, 0)T and S(P) = (0, 0, 1)T, respectively. The profit of a player is deter-
mined by her/his strategy and the strategy of the co-player, according to a fixed payoff matrix.
Without the loss of generality, two frequently used payoff matrices are used for the PDG [28]
and CDP [29, 30], as follows:

PPDG ¼
1 0

1:2 0

 !
and PCDP ¼

2 �2 �5
4 0 �3
2 �2 �5

0
B@

1
CA: ð1Þ

The profit gained by player i from playing with player j can be calculated by ST
i PSj. In each

round, any player i plays the game (PDG or CDP) with their direct neighbors, and the total
payoff Gi can be calculated by

Gi ¼
X
j2Gi

ST
i PSj; ð2Þ

where Si and Sj are the strategies of player i and player j, respectively, Γi represents the set of
neighbors for player i, and P = PPDG if the players participate in PDG; otherwise, P = PCDP if
the players participate in CDP. After each round, the players update their strategies by learning
from their neighbors. Specifically, the Fermi rule is used in the simulations, which can be
described as follows: player i randomly selects one of her/his neighbors, e.g., j, and takes over
j’s strategy with probability

W Si  Sj

� �
¼ 1

1þ exp Gi � Gj

� �
=k

h i ; ð3Þ

where κ represents the noise amplitude. In all simulations, based on existent investigations in
the literature, κ = 0.1. During the evolution of PDG (or CDP), the time series of the strategies
and he payoffs of all players are recorded.

In general, the problem of reconstructing complex networks can be converted into a sparse
signal reconstruction problem, which can be addressed by using a compressed sensing
approach. Specifically, compressed sensing aims at reconstructing the sparse vector X 2 RN in
the form Y = F � X, where Y 2 RM, and F is aM × Nmatrix. The sparse vector can be recon-
structed by solving the following convex-optimization problem [11]:

min k Xk1subject to Y ¼ F �X; ð4Þ

where k Xk1 ¼
PN

i¼1 jXij is the L1 norm of vector X and matrix F satisfies the restricted isome-
try property [11–16]. One of the main advantages of compressed sensing is that the number of
measurements is much less than the length of an unknown vector, that is,M� N.

The relationship between the strategies and payoffs of each player is the key to reconstruct-
ing networks of the evolutionary games based on compressed sensing. The payoff of player of
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player i can be expressed as

GiðtÞ ¼
XN
j¼1;j 6¼i

aijFij ðtÞ; ð5Þ

where aij = 1 if player i and j are connected and aij = 0; otherwise, FijðtÞ ¼ ST
i ðtÞ � P � SjðtÞ is

the virtual payoff, which is exclusively determined by the strategies of i and j. If and only if i
connects with j, the virtual payoff will become real payoff and gained by i. By measuring the
strategies and payoffs ofM accessible time instances t1, . . ., tM, Eq (5) can be expressed in the
following matrix form:

Yi ¼ Fi �Xi; ð6Þ

Where the virtual-payoff matrix Fi, payoff vector Yi and neighboring vector Xi can be written
as

Fi ¼

Fi1ðt1Þ Fi2ðt1Þ � � � FiNðt1Þ
Fi1ðt2Þ Fi2ðt2Þ � � � FiNðt2Þ

..

. ..
. ..

. ..
.

Fi1ðtMÞ Fi2ðtMÞ � � � FiNðtMÞ

2
666664

3
777775; ð7Þ

Yi ¼ Giðt1Þ;Giðt2Þ; � � �GiðtMÞ½ �T; ð8Þ

Xi ¼ ai1; ai2; � � � ; aiN½ �T: ð9Þ

Because the virtual-payoff matrix Fi and the payoff vector Yi can be immediately obtained
from the time series of the strategies of all players and the payoffs of player i, the neighboring
vector of player i can be uncovered based on compressed sensing. Because of the natural scar-
city of the neighboring vector Xi in complex networks, only a small amount of data is sufficient
to reconstruct Xi, taking full advantage of the compressed sensing method in sparse signal
reconstruction. Similarly, the neighboring vectors of all of the other players can be inferred,
yielding the adjacency matrix A = [X1, X2, � � �, XN] by assembling the neighboring vectors of all
players. It is noteworthy that only one set of data is shared when reconstructing the neighbor-
ing vectors of different nodes, enabling the sparse data requirement.

However, the compressed sensing based method may not adequately function with respect
to scale-free networks because of the existence of a small number of hubs that require much
more data to reconstruct their neighbors due to their very high node degrees. Thus, the total
data for fully reconstructing the entire network is determined by the hubs, and the hubs
become the cask short board. This implies that it is likely to considerably reduce the data
requirement for reconstructing the entire network if the relatively large amount of data for
tackling a small number of hubs can be reduced. Therefore, the purpose is to propose a method
to more efficiently reconstruct the neighboring vector of hubs to improve the compressed sens-
ing based method for application on heterogeneous networks.

The improved method can be realized for undirected networks. The majority of nodes in
scale-free networks are small-degree nodes, for which relatively small amounts of data are suffi-
cient. By contrast, the data amount adequate for small-degree nodes is insufficient for hubs,
accounting for the reconstruction errors of hubs. The key lies in how to identify the reconstruc-
tion errors and how to correct the errors. The tasks can be accomplished by exploiting the
reconstruction conflict between hubs and their neighbors. Specifically, for an ingredient aij in
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the reconstructed vector Xi of i and aji in j, aij supposes to be equal to aji for accurate recon-
structions. However, the situation may exist of aij 6¼ aji because of inadequate data-induced
reconstruction errors, especially between hubs and their neighbors. Thus, the frequency of
encountering conflict allows hubs to be identified. After the inference of hubs, the reconstruc-
tion results of smaller-degree nodes can be used to replace those of hubs, which can effectively
reduce the data amount for achieving accurate reconstruction. The conflict-based method
(CBM) can be implemented by the following three steps:

1. Assign a threshold λ, if aij > λ; let aij = 1, deeming the prediction of link from i to j exists;
otherwise, aij = 0.

2. If aij 6¼ aji, let δij = 1; otherwise, δij = 0. The conflict frequency of player i can be defined as

Ci ¼
PN

j¼1;j6¼i dij.

3. For player i and player j, if Ci > Cj, replace aij with aji; otherwise, the value of aij is
unchanged.

Fig 1 provides an intuitive example of a counting conflict for each node and demonstrates why
hubs frequently accompany more conflicts.

If a fraction of links in a network is accessible in advance, the partial structural information
may be used to reduce the data amount for precise reconstruction. Specifically, this technique is
called the Element Elimination Method (EEM) and is described as follows. Assume that a
known fraction of the connections of node i exists, denoted byPi, Eq 5 can then be rewritten as

GiðtÞ ¼
X
j2Pi

aijFij ðtÞ þ
X
j=2Pi

aijFij ðtÞ; ð10Þ

where the first term in the right side are the payoffs of i gained from playing with already known
neighborsPi and the second term is the virtual payoff from playing with unknown neighbors.
After subtracting ∑j 2 Pi

aij Fij(t) on the both sides of Eq 5, the unknown connections of i can be
reconstructed by optimizing the solution of the following equation using the compressed

Fig 1. Schematic illustration of the location of the hubs from the conflicts. A star network is used as an example. The degrees of the hub node 1 and
other nodes are 5 and 1, respectively. a, The schematic illustration is a possible compressed sensing result. The two-way arrows show that no conflict exists,
and the one-way arrows indicate that conflict occurred. The conflict frequency is 3 for the hub and 0 or 1 for the other nodes. The conflict frequency of the hub
is large than the other nodes. Thus, whether there are links between the hub and the others is determined by the other nodes rather than the hub. b, The
reconstructed sample graph after implementing the conflict-based method (CBM).

doi:10.1371/journal.pone.0142837.g001
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sensing approach:

GiðtÞ �
X
j2Pi

aijFij ðtÞ ¼
X
j=2Pi

aijFij ðtÞ: ð11Þ

Consider a simple example with only one accessible link between player i and x. The payoff
and adjacency matrices can be written as

Y0i ¼ Giðt1Þ � aixFixðt1Þ;Giðt2Þ � aixFixðt2Þ; � � �GiðtMÞ � aixFixðtMÞ½ �T; ð12Þ

X0i ¼ ai1; ai2; � � � ; ai;x�1; 0 ; ai;xþ1; � � � ; aiN
� �T

: ð13Þ

After this operation, the unknown connections of i can be reconstructed by optimizing the
solution of the following equation using the compressed sensing approach:

Y0i ¼ Fi �X0i; ð14Þ

Note that vectorX0i is sparser than the original vector Xi without using EEM, accounting for
the requirement of less amounts of data based on compressed sensing.

Moreover, it is expected that the incorporation of CBM and EEM can offer a better recon-
struction compared to using each method separately.

Results
The PDG and CDP are simulated on two types of scale-free networks, Barabási-Albert net-
works (BA) and a static model (SM), whose degree distribution follows the power law PD(k)
*k−γ. For the BA networks, the power index is γ = 3. In the SM network, the exponent of the
power-law degree distribution is adjustable; without the loss of generality, it is set to 2.25.

For the two evolutionary games, the strategies and payoffs of players are recorded in each
round to apply the method to reconstruct networks with different amounts of data (Data�M/
N, whereM is the number of accessible time instances in the time series). Two standard indices
are applied, the area under the receiver operating characteristic curve (AUROC) and the area
under the precision-recall curve (AUPR) to qualify the reconstruction performance of this
method. In particular, before calculating the AUROC and the AUPR at different thresholds,
the elements are adjusted in the predicted adjacency matrix using the conflict-based method.
Because the amount of data needed to fully reconstruct the heterogeneous networks are mainly
determined by hubs, the method is validated based on the performance of reconstructing the
neighbors of the maximum degree node. Figs 2 and 3 show the results of reconstructing the BA
and SM networks for the two types of evolutionary games. It is clear that the conflict-based
method (CBM) can greatly increase the reconstruction accuracy and decrease the amount of
data. For example, as shown in Fig 2, the amount of data needed for an accurate reconstruction
of the BA network for PDG is approximately 60% without CBM. In contrast, after applying the
CBM, the amount of data decreases to roughly 30% and 40%, achieving a 50% decrease in the
data requirement. For the SM networks, the amount of data decreases to approximately 40%
for an accurate reconstruction with CBM. Even with a small amount of data, e.g., Data = 0.1,
the reconstruction accuracy is still significantly improved. These results demonstrate that het-
erogeneous networks can be efficiently inferred from limited time series using this method.

To validate the element elimination method (EEM), it is assumed that a fraction of connec-
tions are accessible in advance. Figs 4 and 5 show the results of reconstructions with respect to
10%, 20% and 40% of the available connections in the networks. When the proportion of acces-
sible connections is small, e.g., 10%, there is no significant improvement if EEM is used when

Efficient Reconstruction of Heterogeneous Networks

PLOS ONE | DOI:10.1371/journal.pone.0142837 November 20, 2015 6 / 12



compared with compressed sensing. When the proportion of accessible connections is large,
e.g., 40%, the time series needed to reconstruct networks decreases by approximately 10% if
using EEM. Considering the accessible information about connections helps to reconstruct the
complex networks, and the combination of CBM and EEM is quite effective in increasing accu-
racy and decreasing data requirements.

Discussion
In many complex systems, the amount of available data may be sporadic and limited with
respect to network size, raising the need to develop efficient approaches to reconstructing com-
plex networks with low data requirements. Despite recent advances in network reconstruction
based on compressed sensing, larger amounts of data are required for reconstructing

Fig 2. AUROC of reconstructing heterogeneous networks. The values of AUROC of reconstructing the maximum degree node of two types of scale-free
networks, Barabási-Albert networks (BA) and the static model (SM), based on the time series obtained from two evolutionary games, the basic prisoner’s
dilemma game (PDG) and the cooperation-defection-punishment game (CDP). The red squares denote the results only with compressed sensing theory
(CST). The blue circles denote the results with the conflict-based method (CBM) based on compressed sensing. The network sizeN is 100, and the average
degree hki is 4. Each data point is obtained by averaging over 100 independent realizations. The error bars denote the standard deviations.

doi:10.1371/journal.pone.0142837.g002
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heterogeneous networks than for homogeneous networks. However, full advantage is not taken
of compressed sensing in sparse signal reconstruction. Two methods are proposed, the con-
flict-based method and the element elimination method, to greatly improve the efficiency of
compressed sensing based methods in reconstructing heterogeneous networks. The two meth-
ods have been validated by taking two types of scale-free networks as examples, demonstrating
that the amount of data required for achieving accurate reconstruction is indeed greatly
reduced compared to the original compressed sensing-based method. The incorporation of the
two methods offers better reconstruction performance than using each method separately. The
prevalence of heterogeneous networks in nature and society allows these approaches to have
potential applications in a wide range of fields. Note that although CBM and EEM are not lim-
ited to reconstructing heterogeneous, the performance of using CBM and EEM for reconstruct-
ing homogeneous networks is not as good as that of heterogeneous networks, because of the

Fig 3. AUPR of reconstructing heterogeneous networks. The values of AUPR of reconstructing the maximum degree node of two types of scale-free
networks, BA and SM, based on the time series obtained from two evolutionary games, PDG and CDP. The red squares denote the results with CST. The
blue circles denote the results with CBM based on compressed sensing. The other parameters are identical to Fig 2.

doi:10.1371/journal.pone.0142837.g003
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lack of cask short board (high degree nodes). Thus our methods in principle are applicable to
heterogeneous networks with hubs. Meanwhile, this work raises some open questions, the
answer to which can further deepen the understanding of the network reconstruction problem.
First, although the efficiency and accuracy of reconstructing network topology has been
remarkably improved, it is still challenging to determine how link weights can be more exactly
inferred. Second, it is hard to figure out how the two methods can be extended to directed net-
works, especially CBM, because conflict can not be defined for directed networks. Third, it is a
fundamental problem to determine the application of this method beyond social interaction
networks, such as in gene regulation networks, protein-protein interaction networks and brain

Fig 4. AUROC of reconstructing heterogeneous networks with a part of accessible connections. The values of AUROC of reconstructing the
maximum degree node of two types of scale-free networks, BA and SM, based on the time series obtained from two evolutionary games, PDG and CDP, with
10%(a-d), 20%(e-h) and 40%(i-l) of the accessible connections. The red circles denote the results of removing those accessible connections before
reconstruction with the CBM based on compressed sensing. The black hexagons denote the results of removing those accessible connections before
reconstruction just by compressed sensing. The green diamonds denote the results of reconstructing networks only by compressed sensing without
removing those accessible connections. The other parameters are identical to Fig 2.

doi:10.1371/journal.pone.0142837.g004
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networks. Nevertheless, this work opens new methods to reconstruct heterogeneous networks
in a more efficient manner, and it is expected to stimulate further efforts to pursue better
approaches to address the inverse problem with a broader application scope.
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